Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

$3 a$-Tosyloxymethyltropane $\left(N^{8}-B\right)$ borane

Andrei S. Batsanov et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$3 a$-Tosyloxymethyltropane $\left(N^{8}-B\right)$ borane

Andrei S. Batsanov,* Judith A. K. Howard, David O'Hagan and Mustafa Tavaslit

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
Correspondence e-mail: a.s.batsanov@durham.ac.uk

Received 5 September 2000
Accepted 19 September 2000
Data validation number: IUC0000262
The title compound [alternative name: 8 -methyl- 8 -azabi-cyclo[3.2.1]octan-3-ylmethyl p-toluenesulfonate $\left(N^{8}-B\right)$-borane], $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{BNO}_{3} \mathrm{~S}$, has the tosyloxymethyl substituent in an endo position. The BH_{3} group is equatorial and the $(\mathrm{N}-$ bonded) methyl group is axial, relative to the six-membered heterocycle. The N-B bond of 1.649 (8) \AA is one of the longest known.

Comment

3α-Tosyloxymethyltropane has been synthesized by Murr et al. (1992) by hydrogenation of 3-methylenetropane and tosylation of the resulting 3α-oxymethyltropane. Repeating this process as part of a multi-stage synthetic route to littorinetype alkaloids (Tavasli, 1999), we accidentally obtained 3α oxymethyltropane ($N^{8}-B$)-borane, (II), in the first stage and 3α-tosyloxymethyltropane ($N^{8}-B$)-borane, (I), in the second.

(I)

According to the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, both (I) and (II) formed as $1: 1$ mixtures of two isomers. One isomer of (I) was isolated and studied in the present work.

The molecule has an endo configuration at C 3 . The BH_{3} substituent at the N atom is equatorial and the methyl one axial with respect to the six-membered heterocycle (the opposite may be the case for the unidentified second isomer). A survey of the April 2000 release of the Cambridge Structural Database (Allen \& Kennard, 1993) yielded 24 structures containing an $\mathrm{N}-\mathrm{B}$ bond between a tertiary amine and a BH_{3} group, the bond distance ranging from 1.60 to $1.66 \AA$ and

[^0]averaging $1.625 \AA$. Thus, the $\mathrm{N}-\mathrm{B}$ bond distance of 1.649 (8) \AA in (I) is relatively long, probably due to steric overcrowding.

Experimental

$\mathrm{HB}(\mathrm{CHMeCHMe} 2)$ was prepared by addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (26.7 mmol) to a solution of $\mathrm{NaBH}_{4}(20 \mathrm{mmol})$ and 2-methyl-2butene (53.4 mmol) in THF (10 ml). 3-Methylenetropane (4.5 mmol) was then added to the solution and the reaction stirred for 16 h at room temperature. A 30% solution of basic peroxide $\left(\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}_{2}\right)$ in ethanol $(8 \mathrm{ml})$ was added and the reaction stirred for another 4 h at 333 K . The mixture was then diluted with water and ether, filtered and the organics were extracted into ether, concentrated in vacuo and the products purified over silica gel, yielding (II) $(70 \mathrm{mg}, 10 \%)$ as a pale-yellow oil. A 1.6 M solution of n-BuLi (2.8 mmol) in hexane was added to a mixture of 2.6 mmol of (II) and 2 mg of $\mathrm{Ph}_{3} \mathrm{CH}$ in THF $(10 \mathrm{ml})$ at 273 K and the reaction was stirred for 15 min . A solution of tosyl chloride (2.6 mmol) in THF (5 ml) was then added and the mixture was stirred for 3.5 h at 273 K , diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with brine. After concentrating the organics in vacuo, a mixture of isomers of (I) was obtained as a white amorphous solid. One isomer was separated by chromatography on silica gel and recrystallized from petroleum ether ($55 \mathrm{mg}, 8 \%$).

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{BNO}_{3} \mathrm{~S}$
$\mathrm{Cu} K \alpha$ radiation
$M_{r}=323.25$
Orthorhombic, $\mathrm{Pna2}_{1}$
$a=21.443$ (2) \AA
$b=7.959$ (1) \AA
$c=10.224$ (2) A
$V=1744.9(4) \AA^{3}$
$Z=4$
Cell parameters from 25 reflections
$\theta=20.5-25.2^{\circ}$
$\mu=1.731 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.28 \times 0.22 \times 0.11 \mathrm{~mm}$
$D_{x}=1.230 \mathrm{Mg} \mathrm{m}^{-3}$

1613 reflections with $I>2 \sigma(I)$
Rigaku AFC-6S four-circle diffractometer
$2 \theta / \omega$ scans
Absorption correction: analytical
(de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.726, T_{\text {max }}=0.837$
2243 measured reflections
2157 independent reflections (see below)

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0473 P)^{2}\right. \\
& +0.4507 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=-0.001 \\
& \Delta \rho_{\text {max }}=0.21 \mathrm{e}^{\text {A }}{ }^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{\AA^{-3}} \\
& \text { Absolute structure: Flack (1983) } \\
& \text { Flack parameter }=0.35 \text { (3) }
\end{aligned}
$$

Table 1

Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

S-O2	$1.424(4)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.522(6)$
S-O3	$1.432(4)$	$\mathrm{C} 1-\mathrm{C} 7$	$1.523(7)$
S-O1	$1.573(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.545(6)$
S-C11	$1.745(5)$	$\mathrm{C} 3-\mathrm{C} 9$	$1.513(6)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.467(5)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.541(6)$
$\mathrm{N}-\mathrm{C} 8$	$1.497(7)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.520(6)$
N-C1	$1.502(6)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.523(7)$
N-C5	$1.518(6)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.536(7)$
$\mathrm{N}-\mathrm{B}$	$1.649(8)$		

$\mathrm{C} 8-\mathrm{N}-\mathrm{C} 1$	$113.3(4)$	$\mathrm{C} 8-\mathrm{N}-\mathrm{B}$	$106.0(4)$
$\mathrm{C} 8-\mathrm{N}-\mathrm{C} 5$	$112.6(4)$	$\mathrm{C} 1-\mathrm{N}-\mathrm{B}$	$113.1(4)$
$\mathrm{C} 1-\mathrm{N}-\mathrm{C} 5$	$99.7(3)$	$\mathrm{C} 5-\mathrm{N}-\mathrm{B}$	$112.3(4)$

1749 independent reflections and 408 of their Friedel equivalents were measured, of which 1229 and 384 , respectively, had $I>2 \sigma(I)$. The crystal was a racemic twin with component contributions of 0.65 (3) and 0.35 (3). H atoms were treated as riding and the BH_{3} group was treated as a 'rotating body' with the refined $\mathrm{B}-\mathrm{H}$ distance converging to $1.19 \AA$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure:

SHELXTL; software used to prepare material for publication: SHELXTL.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37. Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Molecular Structure Corporation (1989). TEXSAN. Version 5.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1991). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Murr, B. L., Parkhill, B. J. \& Nickon, A. (1992). Tetrahedron, 48, 4845-4862.
Tavasli, M. (1999). PhD thesis, University of Durham, England.

[^0]: \dagger Present address: Afyon Kocatepe University, Usak Faculty of Education, Chemistry Teaching, Usak, Turkey.

